Preliminary communication

Stereospecific addition of a phosphinate and of phosphonates to methyl 6-deoxy-2,3-0-isopropylidene-α-L-lyxo-hexopyranosid-4-ulose

PHAM THANH LONG, MITSUJI YAMASHITA*,

Department of Chemistry, Faculty of Engineering, Shizuoka University, Hamamatsu 432 (Japan)

AND SABURO INOKAWA*

Department of Chemistry, Faculty of Science, Okayama University, Okayama 700 (Japan)

(Received July 24th, 1979; accepted for publication, August 9th, 1979)

As an alternative method for preparing sugar derivatives having a phosphorus atom as the ring heteroatom¹, attempts to introduce a carbon-phosphorus bond were made by using the addition reaction of phosphorus compounds to glycosiduloses. It is known that reaction of carbonyl compounds with dialkyl phosphonates affords α -hydroxyphosphonates², and the reaction of glyculoses with dialkyl phosphonate under Abramov conditions has also been reported³. We now report a stereospecific addition reaction of phosphorus compounds to a glycosid-4-ulose.

Methyl 6-deoxy-2,3-O-isopropylidene- α -L-lyxo-hexopyranosid-4-ulose⁴ (1, 2 g) was treated with methyl phenylphosphinate (1.5 g), in the presence of triethylamine (1 mL) as the catalyst, for 10 h at 70-80°. The yield of crude product was almost quantitative, and the ¹H-n.m.r. spectrum of the reaction mixture showed the existence of only one stereoisomer. The product was recrystallized from methanol, to give pure compound 2a in 45% yield, m.p. 179-180°, $[\alpha]_D^{20}$ -82.3° (c 1.0, CHCl₃); $\nu_{\text{max}}^{\text{KBr}}$ 3320° (OH), 1210 (P=O), 751, and 696 cm⁻¹ (Ph); ¹H-n.m.r. (CDCl₃): δ 1.04

OME

$$R(R'O)P$$
 $R(R'O)P$
 $R(R'$

^{*}To whom correspondence may be addressed.

(d, 3 H, J 7.0 Hz, Me-5), 1.36 (s, 3 H, C-Me), 1.52 (s, 3 H, C-Me), 3.33 (s, 3 H, OMe-1), 3.65 (d, 3 H, J_{POCH} 11.0 Hz, P-O-Me), 4.00-5.00 (m, 4 H, H-1,2,3,5), and 7.30-8.10 (m, 5 H, Ph); mass spectrum: m/e, 372 (M⁺).

Anal. Calc. for C₁₇H₂₅O₇P: C, 54.84; H, 6.76. Found: C, 54.70; H, 6.86.

Compound 2a was hydrolyzed with 4m hydrochloric acid at 50°, giving compounds 3α and 3β in the ratio of 9:1. Compound 3α was treated with acetone in the presence of copper(II) sulfate for a week at room temperature, to give compounds 4 and 2a in the ratio of 1:1 (based on the ¹H-n.m.r. spectrum). Compound 4 had m.p. $166-167^{\circ}$, $[\alpha]_D^{17} -127.5^{\circ}$ (c 1.0, CHCl₃); $v_{\text{max}}^{\text{KBr}}$ 3400 (OH) and 1210 cm⁻¹ (P=O); ¹H-n.m.r. (CDCl₃): δ 1.08 (d, 3 H, J 6.8 Hz, Me-5), 1.10 (s, 3 H, C-Me), 1.45 (s, 3 H, C-Me), 3.40 (s, 3 H, OMe-1), 3.68 (d, 3 H, J_{POCH} 11.0 Hz, P-O-Me), 3.90-5.00 (m, 4 H, H-1,2,3,5), and 7.30-8.10 (m, 5 H, Ph); mass spectrum: m/e 372 (M⁺). Therefore, compound 4 had the α -L-talo configuration, and compound 2a was methyl 6-deoxy-2,3-O-isopropylidene-4-C-[(methoxy)phenylphosphinyl]- α -L-talopyranoside.

$$2a \xrightarrow{\text{4M HCI}} \text{Ph(MeO)P} \xrightarrow{\text{CH}_3} \text{OMe}$$

$$3\alpha + 3\beta$$

$$\text{Me}_2\text{CO} \xrightarrow{\text{Ph(MeO)P}} \text{OMe}$$

$$\text{Me}_2\text{CO} \xrightarrow{\text{Ph(MeO)P}} \text{OMe}$$

$$\text{Me}_2\text{CO} \xrightarrow{\text{Ph(MeO)P}} \text{OMe}$$

TABLE I

REACTION OF KETONES 1 AND 5 WITH PHOSPHINATE AND PHOSPHONATES

Ketone	Phosphorus compound	Reaction temp. (°C)	Time (h)	Product	Yield (%)	M.p. (°C)
1	Ph(MeO)P(O)H	70–80	10	2a	45	179–180
1	(MeO) ₂ P(O)H	70-80	10	2b	45	134-135
1	(EtO) ₂ P(O)H	70-80	10	2c	45	125-126
5	(MeO) ₂ P(O)H	room temp.	72	6a,b	quantitative	

^aCrude yield.

TABLE	1	1					- '		
SPECTRA	L	DATA	FOR	CC	мро	UNDS®	2b	AND	2c

Compound	Mass spectrum (m/e, M+)	[α] ^{17b} (degrees)	¹ <i>H-N.m.r</i> . (δ; CDCl ₃)	v _{max} (cm ⁻¹)
2b	326	-38.2	1.40 (s, 3 H, Me), 1.45 (d, 3 H, J 6.7 Hz, Me-5), 1.59 (s, 3 H, Me), 3.40 (s, 3 H, OMe-1), 3.83 (d, 6 H, J 11.0 Hz, POMe), 4.0-5.0 (m, 4 H, H-1,2,3,5)	3340 (OH) 1230 (P=O)
2c	354	-40.6	1.30 (t, 6 H, J 7.1 Hz, CH ₂ Me), 1.40 (s, 3 H, Me), 1.68 (s, 3 H, Me), 1.72 (d, 3 H, J 6.0 Hz, Me-5), 3.39 (s, 3 H, OMe-1), 3.98-5.2 (m, 8 H, POCH ₂ , H-1,2,3,5)	3300 (OH) 1220 (P=O)

"Elemental analysis gave satisfactory results (C, $\pm 0.37\%$; H, $\pm 0.14\%$). In chloroform, c = 1.0.

Stereospecific addition-reactions were also observed on treatment of glycosidulose 1 with dimethyl and diethyl phosphonate, respectively, under the same conditions (see Tables I and II).

On the other hand, reaction of ketone⁵ 5 with dimethyl phosphonate for 3 days at room temperature afforded two diastereoisomeric products, **6a** and **6b**, in the ratio of 1:1 (based on the ¹H-n.m.r. spectrum), and in almost quantitative yield. One of the diastereoisomers had m.p. 79–81°; ¹H-n.m.r. (CDCl₃): δ 1.0–2.5 (m, 4 H, H-2,3), 2.9–4.9 (m, 3 H, H-1,5), 3.45 (s, 3 H, OMe-1), 3.83 (t, 6 H, J_{POCH} 10.8 Hz, P-O-Me), and 4.33 (s, 1 H, OH).

Anal. Calc. for C₈H₁₇O₆P: C, 40.00; H, 7.12. Found: C, 39.53; H, 7.12.

These findings suggest that the substituents on the skeletal carbon atoms of a cyclic ketone determine the direction of attack by the phosphorus atom on a carbonyl group, and that chiral phosphorus compounds should be readily preparable from such ketones.

REFERENCES

- 1 M. YAMASHITA, Y. NAKATSUKASA, M. YOSPIKANE, H. YOSHIDA, T. OGATA, AND S. INOKAWA, Carbohydr. Res., 59 (1977) C12-C14.
- 2 V. S. ABRAMOV, Dokl. Akad. Nauk SSSR, 95 (1954) 991-992; Chem. Abstr., 49 (1955) 6084d-f.
- 3 H. PAULSEN AND W. GREVE, Chem. Ber., 106 (1973) 2124-2139.
- 4 J. YoSHIMURA, K. SATO, AND H. HASHIMOTO, Chem. Lett., (1977) 1327-1330.
- 5 M. YAMASHITA, M. YOSHIKANE, T. OGATA, AND S. INOKAWA, Tetrahedron, 35 (1979) 741-743.